UV Raman Excitation Profiles of Imidazole, Imidazolium, and Water

Author:

Asher Sanford A.1,Murtaugh James L.1

Affiliation:

1. Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

Abstract

Preresonance absolute differential Raman cross sections have been measured between 217 and 600 nm for the symmetric ring mode vibrations of imidazole and imidazolium and for the 1645-cm−1 bending vibration of water. For imidazole and imidazolium the Raman intensities observed with visible wavelength excitation derive mainly from states in the far-UV. The two 190–210 nm π → π* transitions in these species dominate the Raman intensities only for excitation below 300 nm. Both π → π* transitions appear to contribute equally to preresonance enhancement. The data project that selective imidazole ring enhancement from histidine residues in proteins will require excitation below 210 nm. The intensities of the 1645-cm−1 bending vibration of water derive from states in the far-UV. The Raman cross section of this vibration increases only slightly faster than the scattered frequency to the fourth power. This Raman band can now be used as an internal intensity standard for aqueous Raman studies. Preresonance Raman enhancement dominated by transitions which occur at extraordinarily high energies have now been observed for water, acetonitrile, acetone, sulfate, and perchlorate. This behavior may result because molecular valence transitions in the vacuum UV spectral region of condensed phase samples are strongly mixed with ionizing, charge transfer, and Rydberg transitions and have no separate and discrete existence.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3