Affiliation:
1. Analytical Instrument Division, Instrumentation Laboratory, Inc., Jonspin Road, Wilmington, Massachusetts 01887 and Department of Chemistry, Indiana University, Bloomington, Indiana 47405
Abstract
A new method is described and tested for background correction in atomic absorption spectrometry. Applicable to flame or furnace atomizers, the method is capable of correcting backgrounds caused by molecular absorption, particulate scattering, and atomic-line overlap, even up to an absorbance value of 3. Like the Zeeman approach, the new method applies its correction very near the atomic line of interest, can employ single-beam optics, and requires no auxiliary source. However, no ancillary magnet or other costly peripherals are required and working curves are single-valued. The new technique is based on the broadening which occurs in a hollow-cathode spectral line when the lamp is operated at high currents. Under such conditions, the absorbance measured for a narrow (atomic) line is low, whereas the apparent absorbance caused by a broad-band background contributor remains as high as when the lamp is operated at conventional current levels. Background correction can therefore be effected by taking the difference in absorbances measured with the lamp operated at high and low currents. The new technique is evaluated in its ability to correct several different kinds of background interference and is critically compared with competitive methods.
Subject
Spectroscopy,Instrumentation
Cited by
100 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献