A New Background-Correction Method for Atomic Absorption Spectrometry

Author:

Smith S. B.1,Hieftje G. M.1

Affiliation:

1. Analytical Instrument Division, Instrumentation Laboratory, Inc., Jonspin Road, Wilmington, Massachusetts 01887 and Department of Chemistry, Indiana University, Bloomington, Indiana 47405

Abstract

A new method is described and tested for background correction in atomic absorption spectrometry. Applicable to flame or furnace atomizers, the method is capable of correcting backgrounds caused by molecular absorption, particulate scattering, and atomic-line overlap, even up to an absorbance value of 3. Like the Zeeman approach, the new method applies its correction very near the atomic line of interest, can employ single-beam optics, and requires no auxiliary source. However, no ancillary magnet or other costly peripherals are required and working curves are single-valued. The new technique is based on the broadening which occurs in a hollow-cathode spectral line when the lamp is operated at high currents. Under such conditions, the absorbance measured for a narrow (atomic) line is low, whereas the apparent absorbance caused by a broad-band background contributor remains as high as when the lamp is operated at conventional current levels. Background correction can therefore be effected by taking the difference in absorbances measured with the lamp operated at high and low currents. The new technique is evaluated in its ability to correct several different kinds of background interference and is critically compared with competitive methods.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 100 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. NONWOVEN CHITOSAN - PREPARATION AND PROPERTIES;Progress on Chemistry and Application of Chitin and its Derivatives;2019-09-30

2. 2. Atomic absorption spectrometry and atomic fluorescence spectrometry;Elemental Analysis;2019-08-05

3. Atomic Absorption Spectroscopy;Materials Characterization;2019

4. Processing of Chitosan Yarn into Knitted Fabrics;Fibres and Textiles in Eastern Europe;2016-12-31

5. Sinais de fundo em análise instrumental: uma discussão essencial em cursos de graduação;Química Nova;2016-10-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3