Quantile BEAST Attacks the False-Sample Problem in Near-Infrared Reflectance Analysis

Author:

Lodder Robert A.1,Hieftje Gary M.1

Affiliation:

1. Department of Chemistry, Indiana University, Bloomington, Indiana 47405-4001

Abstract

The multiple linear regression approach typically used in near-infrared calibration yields equations in which any amount of reflectance at the analytical wavelengths leads to a corresponding composition value. As a result, when the sample contains a component not present in the training set, erroneous composition values can arise without any indication of error. The Quantile BEAST (Bootstrap Error-Adjusted Single-sample Technique) is described here as a method of detecting one or more “false” samples. The BEAST constructs a multidimensional form in space using the reflectance values of each training-set sample at a number of wavelengths. New samples are then projected into this space, and a confidence test is executed to determine whether the new sample is part of the training-set form. The method is more robust than other procedures because it relies on few assumptions about the structure of the data; therefore, deviations from assumptions do not affect the results of the confidence test.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detection of counterfeit electronic components through ambient mass spectrometry and chemometrics;The Analyst;2014-07-08

2. 26Al-containing acidic and basic sodium aluminum phosphate preparation and use in studies of oral aluminum bioavailability from foods utilizing 26Al as an aluminum tracer;Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms;2005-04

3. Pharmaceutical Assays;Practical Spectroscopy;2002-02-08

4. Blend Uniformity Analysis;Practical Spectroscopy;2002-02-08

5. The bootstrap: a tutorial;Chemometrics and Intelligent Laboratory Systems;2000-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3