Yapay Sinir Ağı Modeli ile BİST'e Kote 10 Bankanın Covid-19 Dönemindeki Finansal Verilerinin Tahminlenme Başarısı Üzerine Bir Araştırma

Author:

VARSAK Serkan1ORCID,ÖZKAN İbrahim2ORCID

Affiliation:

1. BILECIK SEYH EDEBALI UNIVERSITY, FACULTY OF ECONOMICS AND ADMINISTRATIVE SCIENCES

2. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ, LİSANSÜSTÜ EĞİTİM ENSTİTÜSÜ

Abstract

Yapay sinir ağı modeli, yapay zekâ ve makine öğrenmesi modellerinin temelini oluşturmaktadır. Yapay sinir ağı modelinden yola çıkılarak evrişimli sinir ağları, destek vektör makine ve genetik algoritmalar gibi pek çok farklı model türetilmiştir. Bu çalışma yapay zekâ teknolojilerinin temelini oluşturan, yapay sinir ağı modelinin Covid-19 döneminde, bankaların finansal verilerine dayanarak modelin tahmin gücünü test etmek amacıyla yapılmıştır. Çalışmada Borsa İstanbul (BİST)’e kote olan 10 adet bankanın 2005-2021 yılları arasındaki finansal verileri kullanılmıştır. Çalışmanın birinci bölümünde yapay sinir ağı modelinin tanımı ve genel gösterimi verilmiştir. İkinci bölümde ekonomi literatüründe daha önce çeşitli yapay zekâ yöntemleri ile yapılmış çalışmalara yer verilmiştir. Çalışmanın üçüncü bölümünde ise yapay sinir ağı modeli ile elde edilen analiz sonuçları özetlenmiştir. Verilerin analizi noktasında toplamda 17 yıllık veriden oluşan veri setinden Covid-19 dönemine ait olan 2020-2021 dönemine ait 2 yıllık veri test verisi olarak kullanılmıştır. Geriye kalan 15 yıllık verinin içerisinden 13 yıllık kısmı modelin eğitimi için geriye kalan rastgele seçilmiş 2 yıllık kısmı ise modelin Covid-19 dönemi dışındaki başarısını ölçmek üzere test verisi olarak kullanılmıştır.

Publisher

The Journal of International Scientific Researches

Subject

General Engineering

Reference39 articles.

1. Akkaya, G. C., Demirelli, E., ve Yakut, Ü. H. (2009). İşletmelerde Finansal Başarısızlık Tahminlemesi: Yapay Sinir Ağları Modeli İle İMKB Üzerine Bir Uygulama. Eskişehir Osmangazi Üniversitesi Sosyal Bilimler Dergisi, 10(2), 187-216. https://dergipark.org.tr/tr/pub/ogusbd/issue/10996/131592 adresinden alındı

2. Aksoylu, M. Ü. (2021). Projelerle Yapay Zekâ ve Bilgisayarlı Görü (1 b.). İstanbul: Kodlab.

3. Altınırmak, S., ve Karamaşa, Ç. (2016). Comparison Of Machine Learning Techniques For Analyzing Banks Financial Distress. Balıkesir Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 19(36), 291-303.

4. Altunöz, U. (2013). Bankaların Finansal Başarısızlıklarının Yapay Sinir Ağları Modeli Çerçevesinde Tahmin Edilebilirliği. Dokuz Eylül Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 28(2), 189-217.

5. Arda, E., ve Küçükoğlu, G. (2021). Yapay Zeka Yöntemleri İle Hisse Senedi Fiyat Öngörüleri. Ekonomi, Politika ve Finans Araştırmaları Dergisi, 6(2), 565-586. doi:10.30784/epfad.878664

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3