Affiliation:
1. Erzincan Binali Yıldırım Üniversitesi
Abstract
Finansal risk ve belirsizlikler nedeniyle karşılaşılan problemler dikkate alındığında, finansal stres endeksinin belirlenmesi büyük önem taşımaktadır. Çalışma ile makine öğrenmesi yöntemleri kullanılarak finansal stres endeksi seviyesinin tahmin edilmesi amaçlanmaktadır. Bu amaçla finansal stres endeksinin haftalık zaman serileri, bağımsız ve hibrit modeller kullanılarak incelenmiştir. Yapay sinir ağları, bağımsız makine öğrenme modelleri olarak kullanılırken, hibrit modeller oluşturmak için bir ön işleme tekniği olarak dalgacık dönüşümü kullanılmıştır. Ayrıca, finansal stres endeksi tahminlerinde, model doğruluklarını artırmak için otokorelasyon fonksiyonlarını kullanarak gecikme uzunlukları elde edilmiştir. Çalışmanın bulguları, çeşitli performans göstergeleri açısından değerlendirilmiştir. Finansal stres endeksinin tahmin edilmesinde dalgacık dönüşümlü yapay sinir ağları modelinin, yalın yapay sinir ağları modelinden daha iyi performans sergilediği tespit edilmiştir. Çalışma sonuçlarının finansal stres endeksini takip eden araştırmacı ve uygulayıcılar için fayda sağlayacağı düşünülmektedir.
Publisher
The Journal of International Scientific Researches
Reference36 articles.
1. Aghelpour, P., Mohammadi, B., & Biazar, S. M. (2019). Long-term monthly average temperature forecasting in some climate types of Iran, using the models SARIMA, SVR, and SVR-FA. Theoretical and Applied Climatology, 138(3), 1471-1480.
2. Akay, E. Ç., Topal, K. H., Kizilarslan, S. & Bulbul, H. (2019). Forecasting of Turkish housing price index: ARIMA, random forest, ARIMA-random forest. Pressacademia, 10(10), 7-11.
3. Aker, Y. (2012). Analysis of Price Volatility in BIST 100 Index With Time Series: Comparison of Fbprophet and LSTM Model. Avrupa Bilim ve Teknoloji Dergisi, (35), 89-93.
4. Aksoy, B. (2021). Pay senedi fiyat yönünün makine öğrenmesi yöntemleri ile tahmini: Borsa İstanbul örneği. Business and Economics Research Journal, 12(1), 89-110.
5. Alsu, E. (2020). Finansal Stres İndeksi İle Doğrudan Yabancı Yatırımlar, Portföy Yatırımları Ve Dış Borç Stoku Arasındaki İlişki: ARDL Sınır Testi. ETÜ Sentez İktisadi ve İdari Bilimler Dergisi, (1), 27-40.