Impact of tissue-electrode contact force on irreversible electroporation for atrial fibrillation in potato models

Author:

Abstract

Background: Irreversible electroporation (IRE) is an emerging tissue ablation technique that offers advantages over traditional catheter ablation, such as minimal thermal damage and reduced treatment time. However, as this technique also involves delivering energy through a catheter to target tissue, there are still challenges regarding the contact between the catheter and the targeted tissue, and there is a lack of relevant studies. In this study, we examined this issue using potato models with three groups of experiments. Methods: First, the relationship between the effect of biphasic and monophasic output modes and contact force (CF) was studied. Next, the effect of different voltages on biphasic output mode was examined. Finally, impedance analysis was conducted to test the contact impedance under different CFs. Results: The IRE ablation efficacy increased with the increase of CF in both monophasic and biphasic output modes, and there was a strong correlation between the ablation efficacy and the CF. In addition, at three voltage levels, the IRE ablation efficacy increased with increasing CF, and there was a strong correlation between the ablation efficacy and the CF. Conclusion: The results indicate that, under common IRE electrical parameter configuration, the effect of IRE on the tissue has a positive response to the CF of the electrode in the potato model. This finding has important implications for the design of electrodes used in IRE for the treatment of atrial fibrillation.

Funder

National Natural Science Foundation of China

Publisher

Zentime Publishing Corporation Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3