Research progress of biodegradable staples in gastrointestinal anastomosis

Author:

Abstract

Since the 1960s, anastomosis instruments have become integral in gastrointestinal procedures, employing Titanium (Ti) alloy staples. These staples, however, remain permanently in the body, potentially inciting inflammatory reactions, compromising computed tomography scans, and causing diagnostic inaccuracies. This scenario underscores the imperative for biodegradable surgical staples, spurring research into materials that exhibit both superior biodegradability and mechanical integrity. Current investigations are focused on Magnesium (Mg), Zinc (Zn), and their alloys for their exemplary biodegradability, mechanical strength, and biocompatibility, making them promising candidates for gastrointestinal anastomosis. This review encapsulates the latest advancements in biodegradable surgical staples, emphasizing material and structural enhancements. It details the mechanical attributes of wires intended for staple fabrication, the corrosion dynamics across varied environments such as in vitro immersion solutions and in vivo implantation sites and the impact of structural refinements on staple biodegradability. Additionally, it contrasts the benefits and limitations of Mg-based and Zn-based staples and offers insights into the potential and hurdles in developing biodegradable surgical staples, thereby fostering further exploration in this field.

Publisher

Zentime Publishing Corporation Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3