Therapeutic Sources of Skeletal Muscle Regeneration from Volumetric Muscle Loss: A Narrative Review

Author:

Lee KwangjunORCID,Park WonilORCID,Hong Kwang-SeokORCID

Abstract

PURPOSE: Minor skeletal muscle injuries can be repaired, but more extensive volumetric muscle loss (VML) leads to a permanent functional disability with ambiguous therapeutic outcomes, and reconstructive surgical procedures are constrained by donor tissue scarcity. This review assessed the considerable attention paid to biomaterials in healing damaged skeletal muscle.METHODS: A comprehensive search in PubMed, Web of Science, Google Scholar, and Wiley Online Library was conducted to obtain previous studies exploring the state of biocompatible tissue scaffolds for VML recovery.RESULTS: By regenerating the function of damaged skeletal muscle, tissue-engineered skeletal muscle construction could revolutionize the treatment of VML. However, transporting cells into the wounded muscle location presents a significant challenge because it may result in unfavorable immunological reactions. The development and validation of several biomaterials with varying physical and chemical natures to treat various muscle injuries have recently been undertaken to overcome this problem. This review discusses the relative benefits of satellite cells (SC), the most prevalent skeletal muscle stem cells employed to seed scaffolds.CONCLUSIONS: Biomaterials can be used with skeletal muscle stem cells and growth factors to repair VML because of their customizable and desirable physicochemical qualities. Owing to the capacity of SCs for self-renewal and their undifferentiated state, these cells are excellent candidates for cell therapy. A large gap exists between understanding SC behavior and how it can be used to repair and regenerate human skeletal muscle tissue. Thus, this review sought to portray the current knowledge on the lifespan of SCs and their involvement in exercise-induced muscle regeneration and hypertrophy.

Funder

Chung-Ang University

Publisher

Korean Society of Exercise Physiology

Subject

Physiology (medical),Public Health, Environmental and Occupational Health,Physical Therapy, Sports Therapy and Rehabilitation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3