Effects of Resistance Exercise Training on Aged Skeletal Muscle: Potential Role of Muscle Stem Cells

Author:

Kim Dong-IlORCID,Kang NyeonjuORCID,Park Young-MinORCID

Abstract

PURPOSE: The prevalence of sarcopenia, which can lead to disability, hospitalization, and death, is increasing among older populations. Resistance exercise training (RT) is currently the most effective strategy for combating sarcopenia by stimulating hypertrophy and increasing strength. This review describes the underlying mechanisms of aging skeletal muscle and whether RT attenuates aging-related loss of muscle function and mass.METHODS: We reviewed and summarized previous research using PubMed, Science Direct, and Google Scholar databases.RESULTS: Load-induced muscle growth is a complex phenomenon that depends on various physiological systems and signaling pathways. Muscle growth occurs through signaling events arising from mechanical stress and consequent muscle protein turnover controlled by the balance between protein synthesis and degradation, which is negatively affected by aging. The authors used the myonuclear domains mediated by muscle satellite cells to explain the molecular machinery of exercise-induced muscle growth and recovery in aging muscles.CONCLUSIONS: Despite a blunted molecular response to an exercise bout, aging muscle cells demonstrated remarkable plasticity, with substantial improvements in myofibril size and strength during RT. More studies are necessary to elucidate the specific mechanisms by which RT activates muscle satellite cells and mitogenic and myogenic signaling in aged muscles.

Funder

Incheon National University

Publisher

Korean Society of Exercise Physiology

Subject

Physiology (medical),Public Health, Environmental and Occupational Health,Physical Therapy, Sports Therapy and Rehabilitation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3