Abstract
In the recent past, sentiment analysis has been an area of interests of psychologists, sociologists, neurologists, computer scientists, and linguists including corpus linguists and computational linguists. Interdisciplinary approaches to researching various issues especially the analysis of social media websites such as Facebook, Twitter, and Instagram are becoming popular nowadays. The availability of data on social media has made it easier to analyse the opinion or sentiments of its users. Analysis of these sentiments could reveal the face of users and it could help in various decision-making processes. Sentiment analysis is a system of knowing polarity (positive, negative, and neutral) in discourse. Moreover, sentiments can enable and disable certain functions of discourse and can divert the attention of the audience from important to a less important issue or otherwise, hence, there is a need to analyse the sentiments. In this research, sentiments (Polarity) of Imran Khan’s tweets are analysed with the help of R studio. Data for this study is collected from Imran Khan’s one-year’s tweets, tweeted from 1st January 2018 to 20th November 2018. Later we saved the data in. csv files. The results of the polarity check revealed that he has used all three types of sentiments that is positive, negative, and neutral. However, he mostly used neutral or free polarity items (FPIs) that is 67.41% in his tweets. Among positive and negative polarity items the number of negative polarity items (NPIs) is higher that is 23.21% as compared to positive polarity items (PPIs) which are only 9.40%. The manual analysis of results revealed that only software is not enough and there is a need to check the accuracy of the results manually. The use of negative polarity/negative face reveals that he tries to be independent and autonomous in his decisions (Goffman, 1967). The use of positive polarity items shows he tries to show his positive face to others. Moreover, sentiment analysis demonstrates the presence of themes propagated through the use of various lexical items.
Publisher
National Institute of Psychology, Centre of Excellence, Quaid-i-Azam University
Reference30 articles.
1. Al-Hajjar, D., & Syed, A. Z. (2015). Applying sentiment and emotion analysis on brand tweets for digital marketing. In 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), 1-6. doi:10.1109/AEECT.2015.7360592
2. Asghar, M. Z., Khan, A., Khan, F., & Kundi, F. M. (2018). RIFT: A rule induction framework for twitter sentiment analysis. Arabian Journal for Science and Engineering, 43(2), 857-877. Retrieved from https://link. springer.com/article/10.1007/s13369-017-2770-1
3. Bharath, R. B., Prabhakaran, R., Saravanan, N., & Vinoth, M. (2018). Twitter sentiment analysis. International Journal of Pure and Applied Mathematics, 119(10), 1785-1791. Retrieved fromhttps://acadpubl.eu/jsi/ 2018-119-10/articles/10b/61.pdf
4. Bulmer, M., Bohnke, J. R., & Lewis, G. J. (2017). Predicting moral sentiment towards physician-assisted suicide: The role of religion, conservatism, authoritarianism, and Big Five personality. Personality and Individual Differences, 105, 244-251. doi:10.1016/j.paid.2016.09. 034
5. Bhatia, R., Garg, P., & Johari, R. (2018). Corpus based twitter sentiment analysis. In Proceedings of 3rd International Conference on Internet of Things and Connected Technologies (ICIoTCT), 743-748. doi:10.2139/ ssrn.3170323