Abstract
Pure polyacrylonitrile (PAN) fibers with diameter size at micrometric scale were obtained and collected radially using an immersion-jet wet spinning .system. This technique is a fast and easy approach to fabricate micrometric PAN fibers. The diameter of the fiber can be easily controlled by adjusting the size of the spinneret. Uniform, smooth and continuous PAN microfibers were suitable modified by thermal stabilization and alkaline saponification to obtain pH-sensitive fibers. The effect of diameter size fiber on the chemical actuation behavior was investigated in terms of length change characteristics under the influence of pH solution. The microfibers showed expanding/contracting behavior and force generation stimulated by changes in the environment pH. The fibers structural and chemical properties were characterized using the FT-IR spectroscopy and SEM microscopy techniques.
Reference28 articles.
1. Brandrup, J. y Peebles, L. H., (1968). On the chromophore of polyacrylonitrile. IV. thermal oxidation of polyacrylonitrile and other nitrile-containing compounds. Macromolecules. 1(1), 64–72.
2. Choe, K. y Kim, K. J., (2006). Polyacrylonitrile linear actuators: chemomechanical and elec-tro-chemomechanical properties. Sensors and Actuators A: Physical. 126(1), 165–172.
3. Doi, M., Matsumoto, M. y Hirose, Y., (1992). Deformation of ionic polymer gels by electric fields. Macromolecules. 25(20), 5504–5511.
4. Farsani, R. E., Raissi, S., Shokuhfar, A. y Sedghi, A., (2009). FT-IR study of stabilized PAN fibers for fabrication of carbon fibers. International Journal of Mechanical and Mechatronics Engineering. 3(2), 161–164.
5. Feng, J., Zhang, C., Feng, J., Jiang, Y. y Zhao, N., (2011). Carbon aerogel composites prepared by am-bient drying and using oxidized polyacrylonitrile fibers as reinforcements. ACS Applied Materials & Interfaces. 3(12), 4796–4803.