Potential of Verrucodesmus verrucosus in the removal of nitrogen and phosphorus structures from wastewater from pig farms
-
Published:2024-05-02
Issue:
Volume:26
Page:283-292
-
ISSN:1665-1456
-
Container-title:Biotecnia
-
language:
-
Short-container-title:BIOTECNIA
Author:
Zenteno Carballo Ana Gabriela,Sánchez Roque Yazmin,Saldaña Trinidad Sergio,Canseco Pérez Miguel Angel,Berrones Hernández Roberto,Pérez Luna Yolanda del Carmen
Abstract
Verrucodesmus verrucosus in residual water from a pig farm located in Suchiapa, Chiapas, Mexico, was evaluated as a mixotrophic culture medium. The evaluation was carried out for 40 days, under the 12:12 light / dark cycle, two growth stages were evaluated (piglet and fattening) and the 50:50 mixture of these, as well as to the residual water two pre-treatments were applied, this consisted of a filtration process using a 15 µm diameter nylon filter and a sterilization process. The microalgal species Verrucodesmus verrucosus was shown to have bioremediation potential by growing in wastewater and producing biomass, demonstrating high efficiency in removing contaminants. The maximum Chemical Oxygen Demand (COD) removal was in the Ps treatment (sterile piglet) where the removal of 96.8 % was reached, while the Biochemical Oxygen Demand (BOD) had a maximum removal of 96.7 % in the Pf treatment (filtered piglet). The removal of total nitrogen, ammonia and nitrate was demonstrated with a percentage of 85.5 %, 74 % and 91 % respectively. As for the maximum removal of phosphorus and phosphate, they reach values of 97.9 % and 82 % respectively. On the other hand, it was possible to demonstrate the antagonistic capacity of this microalga with respect to Escherichia coli, where 100 % elimination was achieved.
Publisher
Universidad de Sonora
Reference41 articles.
1. Azam, R., Kothari, R., Singh, H. M., Ahmad, S., Ashokkumar, V., & Tyagi, V. V. (2020). Production of algal biomass for its biochemical profile using slaughterhouse wastewater for treatment under axenic conditions. Bioresource technology, 306, 123116. doi: https://doi.org/10.1016/j.biortech.2020.123116 2. Bibbal, D., Um, M. M., Diallo, A. A., Kérourédan, M., Dupouy, V., Toutain, P. L., ... & Brugère, H. (2018). Mixing of Shiga toxin-producing and enteropathogenic Escherichia coli in a wastewater treat-ment plant receiving city and slaughterhouse wastewater. International Journal of Hygiene and Envi-ronmental Health, 221(2), 355-363. doi: https://doi.org/10.1016/j.ijheh.2017.12.009 3. Banach, J. L., van Overbeek, L. S., Groot, M. N., Van der Zouwen, P. S., & Van der Fels-Klerx, H. J. (2018). Efficacy of chlorine dioxide on Escherichia coli inactivation during pilot-scale fresh-cut lettuce processing. International journal of food microbiology, 269, 128-136. doi: https://doi.org/10.1016/j.ijfoodmicro.2018.01.013 4. Cai, X. B., Yu, Q. Q., Liu, R., Zhao, Y., & Chen, L. J. (2017). Cultivation of Spirulina platensis in Digest-ed Piggery Wastewater Pretreated by SBR with Operating Conditions Optimization. Huan Jing ke Xue= Huanjing Kexue, 38(7), 2910-2916. doi: https://doi.org/10.13227/j.hjkx.201612168 5. Chen, C. Y., Kuo, E. W., Nagarajan, D., Ho, S. H., Dong, C. D., Lee, D. J., & Chang, J. S. (2020). Culti-vating Chlorella sorokiniana AK-1 with swine wastewater for simultaneous wastewater treatment and algal biomass production. Bioresource technology, 302, 122814. doi: https://doi.org/10.1016/j.biortech.2020.122814
|
|