Bionomic modelling of hyperstable fish populations. The gulf corvina, Cynoscion othonopterus, fishery as case study

Author:

Urías-Sotomayor Ricardo,Aragón-Noriega Eugenio A.,Payán-Alejo Jorge,Cisneros Mata Miguel Angel,Rodríguez-Domínguez Guillermo

Abstract

Catch and fishing effort data are generally available, hence surplus production models are commonly used to conduct assessments. However, hyperstability resulting from spawning aggregations (SA) pose challenges to determine status and inform management of many fisheries resources. Using data from 1991 to 2019, we develop a method to study hyperstable fished stocks relaxing the assumption of constant catchability, hence direct dependence of catch-per-unit-effort and biomass. Information criterion was used to choose the best model including a Cobb-Douglas function for gulf corvina (Cynoscion othonopterus), a sciaenid fish endemic to the gulf of California managed through annual quotas. Bionomic stock-reduction models were fit using catch, effort, published natural mortality, virgin biomass, and economic structure. Models were solved using maximum likelihood and the best model chosen with Akaike information criterion. Current fishing effort is beyond bionomic optimum. This deserves a precautionary approach to protect this endemic species and sustain the fishery.

Publisher

Universidad de Sonora

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3