Linking Probability Theory and Quantum Mechanics, and a Novel Formulation of Quantization

Author:

,Wallentin FritiofORCID,

Abstract

This doctoral thesis in mathematics consists of three articles that explore the probabilistic structure of quantum mechanics and quantization from a novel perspective. The thesis adopts a probabilistic interpretation of quantum mechanics, which views the archetypical quantum experiments of Bell- and double-slit- type as violating the principle of non-contextuality, i.e., the assertion that all events and observables are always representable on one single Kolmogorovian probability space, rather than the principles of realism or locality. This probabilistic interpretation posits that quantum mechanics constitutes a probability theory that adheres to the principle of contextuality, and that quantum events explicitly occur at the level of measurement, rather than the level of that which is measured, as these are traditionally interpreted. The thesis establishes a natural connection between the probabilistic structure of quantum mechanics, specifically Born’s rule, and the frequentist interpretation of probability. The major conceptual step in establishing this connection is to re-identify quantum observables instead as unitary representations of groups, whose irreducible sub-representations correspond to the observable’s different possible outcomes, rather than primarily as self- adjoint operators. Furthermore, the thesis reformulates classical statistical mechanics in the formalism of quantum mechanics, known as the Koopman-von Neumann formulation, to demonstrate that classical statistical mechanics also adheres to the principle of contextuality. This finding is significant because it raises questions about the existence of a hidden-variable model of classical statistical mechanics of the kind as examined in Bell’s theorem, where this presumed hidden-variable model traditionally has been seen as that which distinguishes "classical" from "quantum" probability.A novel reformulation of quantization is proposed considering it rather in terms of the representation theory of Hamiltonian flows and their associated inherent symmetry group of symplectomorphisms. Contrary to the traditional view of quantization, this formulation can be regarded as compatible with the probabilistic interpretation of quantum mechanics and offers a new perspective on the quantization of gravity.

Publisher

Linnaeus University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3