OXIDATIVE MODIFICATION OF PROTEINS AND GLUTATHIONE SYSTEM IN ADIPOCYTES UNDER DIABETES

Author:

Shakhristova Ye. V.1,Stepovaya Ye. A.1,Ivanov V. V.1,Nosareva O. L.1,Ryazantseva N. V.1,Novitsky V. V.1

Affiliation:

1. Siberian State Medical University, Tomsk

Abstract

Currently, diabetes ranks third in relation to medical and social significance after cardiovascular diseases and cancer and is the leading cause of blindness; it greatly increases the risk of myocardial infarction, coronary heart disease, nephropathy and hypertension in patients with this disorder; therefore clinical and experimental studies aimed at investigation of diabetes emergence and development mechanisms are urgent.The aim of the study was to investigate the status of oxidative modification of proteins and glutathionedependent antioxidant defense system in adipocytes of rats with alloxan diabetes under conditions of oxidative stress.Material and methods. Development of type 1 diabetes was induced in rats by alloxan administration (90 mg/kg of body mass). Adipocytes were obtained from epididymal adipose tissue of rats. The level of carbonyl derivatives of proteins, oxidized tryptophan, bityrosine, general, reduced, oxygenated and protein-bound glutathione, as well as glutathione peroxidase activity in adipocytes of rats was determined.Results. In adipocytes of rats with alloxan diabetes, concentration of carbonyl derivatives of proteins, bityrosine and oxidized tryptophan increased on the background of redox-potential of glutathione system and glutathione peroxidase activity decrease.Conclusion. The obtained data indicate the activation of free-radical oxidation of proteins and reduction of antioxidant defense under conditions of oxidative stress in the adipose tissue of rats with alloxan diabetes; this process plays an important role in pathogenesis of diabetes and its complications development.

Publisher

Siberian State Medical University

Subject

Molecular Medicine

Reference18 articles.

1. Suntsov Yu.I., Bolotskaya L.L., Maslova O.V., Kazakov I.V. Diabetes Mellitus, 2011, no. 1, pp. 15–18 (in Russian).

2. Dubininа Ye.Ye. Products of metabolism of oxygen in the functional activity of cells (life and death, creation and destruction). Physiological and clinical-biochemical aspects. St. Petersburg, Medical press Publ., 2006. 400 р. (in Russian).

3. Lushchak V.I. Biochemistry, 2007, vol. 72, no. 8, рр. 995–1015 (in Russian).

4. Menshchikova Ye.B., Zenkov N.K., Lankin V.Z., Bondar I.A., Trufakin V.A. Oxidative stress: Pathological conditions and diseases. Novosibirsk, ART Publ., 2008. 284 р.

5. Furukawa S., Fujita T., Shimabukuro M. Increased oxidative stress in obesity and its impact on metabolic syndrome. Clin. Invest., 2004, Dec., vol. 114, no. 12, pp. 1752–1761. doi:10.1172/JCI200421625.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3