ELECTROKINETIC PROPERTIES, IN VITRO DISSOLUTION, AND PROSPECTIVE HEMOAND BIOCOMPATIBILITY OF TITANIUM OXIDE AND OXYNITRIDE FILMS FOR CARDIOVASCULAR STENTS

Author:

Khlusov I. A.1,Pichugin V. F.2,Pustovalova A. A.2,Konischev M. E.2,Dzyuman A. N.3,Epple M.4,Ulbricht M.4,Cicinskas E.3,Gulaya V. S.3,Vikhareva V. V.3

Affiliation:

1. Siberian State Medical University, Tomsk; National Research Tomsk Polytechnic University, Tomsk

2. National Research Tomsk Polytechnic University, Tomsk

3. Siberian State Medical University, Tomsk

4. Duisburg-Essen University, Essen

Abstract

A state of titanium oxide and oxynitride coatings on L316 steel has been studied before and after their contact with model biological fluids. Electrokinetic investigation in 1 mmol potassium chloride showed significant (more than 10 times) fall of magnitude of electrostatic potential of thin (200–300 nm) titanium films at pH changing in the range of 5–9 units during 2 h. Nevertheless, zeta-potential of all samples had negative charge under pH > 6.5. Long-term (5 weeks) contact of samples with simulated body fluid (SBF) promoted steel corrosion and titanium oxide and oxynitride films dissolution. On the other hand, sodium and chloride ions precipitation and sodium chloride crystals formation occurred on the samples. Of positive fact is an absence of calcification of tested artificial surfaces in conditions of long-term being in SBF solution. It is supposed decreasing hazard of fast thrombosis and loss of materials functional properties. According to in vitro experiment conducted, prospective biocompatibility of materials tested before and after their contact with SBF lines up following manner: Ti–O–N (1/3) > Ti–O–N (1/1), TiO2 > Steel. It may be explained by: 1) the corrosion-preventive properties of thin titanium oxide and oxynitride films;2) a store of surface negative charge for Ti–O–N (1/3) film; 3) minor augmentation of mass and thickness of titanium films connected with speed of mineralization processes on the interface of solution/solid body. At the same time, initial (before SBF contact) differences of samples wettability became equal. Modifying effect of model biological fluids on physicochemical characteristics of materials tested (roughness enhancement, a reduction or reversion of surface negative potential, sharp augmentation of surface hydrofilicity) should took into account under titanium oxide and oxynitride films formation and a forecast of their optimal biological properties as the materials for cardiovascular stents.

Publisher

Siberian State Medical University

Subject

Molecular Medicine

Reference34 articles.

1. Belenkov Yu.I., Samko A.N., Batyraliev T.A., Pershukov I.V. Koronarnaya angioplastika: vzglyad cherez 30 let [Coronary angioplasty: a view through 30 years]. Kardiologia – Cardiology, 2007, no. 4, pp. 4–14.

2. Holmes J. State of the art in coronary intervention. Am. J. Cardiol., 2003, vol. 91, pp. 50A–53A.

3. Virmani R., Guagliumi G., Farb A., Musumeci G., Grieco N., Motta T., Mihalcsik L., Tespili M., Valsecchi O., Kolodgie F.D. Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent: should we be cautious? Circulation, 2004, vol. 109, no. 6, pp. 701–705.

4. Gamici G. What is an optimal stent? Biological requirements of drug eluting stents. Kardiovasculare Medizin, 2008, vol. 11, pp. 22–25.

5. Karjalainen P.P., Biancari F., Ylitalo A., Raeber L., Billinger M., Hess O., Airaksinen K.E.J. Pooled analysis of trials comparing titanium-nitride-oxide-coated stents with paclitaxel-eluting stents in patients undergoing coronary stenting. J. Invasive Cardiol., 2010, vol. 22, no. 7, pp. 322–326.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3