Mycobacterial metabolic model development for drug target identification

Author:

Bannerman Bridget P.12ORCID,Oarga Alexandru3ORCID,Júlvez Jorge3ORCID

Affiliation:

1. Lucy Cavendish College, University of Cambridge, Lady Margaret Rd, Cambridge, CB3 0BU, UK

2. Science Resources Foundation, 128 City Road, London, EC1V 2NX, UK

3. Department of Computer Science and Systems Engineering, University of Zaragoza, C/María de Luna n° 1, 50018, Zaragoza, Spain

Abstract

Antibiotic resistance is increasing at an alarming rate, and three related mycobacteria are sources of widespread infections in humans. According to the World Health Organization, Mycobacterium leprae, which causes leprosy, is still endemic in tropical countries; Mycobacterium tuberculosis is the second leading infectious killer worldwide after COVID-19; and Mycobacteroides abscessus, a group of non-tuberculous mycobacteria, causes lung infections and other healthcare-associated infections in humans. Due to the rise in resistance to common antibacterial drugs, it is critical that we develop alternatives to traditional treatment procedures. Furthermore, an understanding of the biochemical mechanisms underlying pathogenic evolution is important for the treatment and management of these diseases. In this study, metabolic models have been developed for two bacterial pathogens, M. leprae and My. abscessus, and a new computational tool has been used to identify potential drug targets, which are referred to as bottleneck reactions. The genes, reactions, and pathways in each of these organisms have been highlighted; the potential drug targets can be further explored as broad-spectrum antibacterials and the unique drug targets for each pathogen are significant for precision medicine initiatives. The models and associated datasets described in this paper are available in GigaDB, Biomodels, and PatMeDB repositories.

Funder

Spanish Ministry of Science, Innovation, and Universities

Publisher

GigaScience Press

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3