Development of an automated method for the determination of human paraoxonase1 activity

Author:

Araoud Manel12,Neffeti Fadoua2,Douki Wahiba2,Kenani Abderraouf3,Najjar Mohamed Fadhel2

Affiliation:

1. Laboratory of Biochemistry, Faculty of Medicine of Monastir, University Hospital Fattouma Bourguiba Monastir, Monastir 5019, Tunisia Tunisia

2. Laboratory of Biochemistry- Toxicology, University Hospital Fattouma Bourguiba Monastir, Monastir 5019, Tunisia

3. Laboratory of Biochemistry, Faculty of Medicine of Monastir, University Hospital Fattouma Bourguiba Monastir, Monastir 5019, Tunisia

Abstract

AbstractBackground: Human plasma paraoxonase1 (PON1) is an esterase catalyzing the hydrolysis of organophosphorus pesticides and other xenobiotics. The aims of this study were to develop a rapid method to determinate PON1 activity, evaluate some interference, and study the influence of storage temperature on PON1 activity assay.Methods: Measurement of PON1 activity was performed for 369 samples by measuring the hydrolysis of paraoxon using a spectrophotometric method adapted on konelab 30 ⃞.Results: The developed method facilitates the determination of PON1 activity at the rate of more than 200 samples per hour, and it is linear between 2 and 900 IU/L. Intra and inter-assay imprecision coefficients of variation were 2% and 5% respectively. PON1 activity in serum was correlated with those in heparinized plasma (r = 0.994, p < 0.001) and in plasma/EDTA (r = 0.962, p < 0.001). The mean inhibition of the PON1 activity was, by EDTA/K3, 41 ± 10 %. There was not significant PON1 activity variation after 40 days of storage at -20°C or at +4 ⃞ C. There were no substantial interferences from haemoglobin, jaundice and hyperlipidemia.Conclusion: The developed method is reliable, reproducible, and suitable. It can also be performed on heparinized plasma for the determination of PON1 activity. Hence, it may be useful for assaying PON1 activity in several intoxications such as organophosphorus, sarin, and soman nerve agents.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3