Original article. Human dental pulp stem cells as a potential feeder layer for human embryonic stem cell culture

Author:

Chattong Supreecha123,Rungsiwiwut Ruttachuk4,Yindeedej Wittaya1,Sereemaspun Amornpun3,Pruksananonda Kamthorn4,Virutamasen Pramuan4,Setpakdee Anant1,Manotham Krissanapong1

Affiliation:

1. Renal Unit, Department of Medicine, Lerdsin General Hospital, Bangkok 10500, Thailand

2. Inter-Department Program of Biomedical Sciences, Faculty of Graduate School, Chulalongkorn University, Bangkok 10330, Thailand

3. Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand

4. Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand

Abstract

Abstract Background: Human embryonic stem (hES) cells are pluripotent, and can differentiate into three germ layers. Traditionally, cultures of hES cells are maintained in a system containing mouse embryonic fibroblasts as a feeder layer for support of undifferentiated growth. However, contamination by animal cells limits the use of hES cells. Objective: We evaluated the use of human dental pulp stem cells (hDPSCs) as a feeder layer for hES cell culture. It should be possible to obtain a new source of human mesenchymal stem cells for feeder cells to maintain undifferentiated growth of hES cells. Methods: hDPSCs from removed impacted wisdom teeth (third molars) were extracted, cultured, and characterized for mesenchymal stem cell properties. Furthermore, hDPSCs were used as a feeder layer for culturing Chula2 and Chula5 hES cell lines. Finally, hES cell lines grown on hDPSCs feeders were examined embryonic stem cell properties. Results: We found that hDPSCs, which have mesenchymal properties, can support undifferentiated growth of hES cell lines. After prolonged culture (passage 17), these hES cell lines still maintain ES cell properties including typical morphology seen in hES cells, the expression of pluripotency markers (Oct4, Sox2, Nanog, Rex1, SSEA-3, SSEA-4, TRA-1-60, and TRA-1-81), embryoid body formation and retention of a normal karyotype. Conclusion: hDPSCs, derived from the pulp tissue of impacted third molars, are a potential source of human feeder cells for the culture of undifferentiated hES cells.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3