Improving Shoulder Kinematics in Individuals With Paraplegia: Comparison Across Circuit Resistance Training Exercises and Modifications in Hand Position

Author:

Riek Linda M.1,Tome Joshua2,Ludewig Paula M.3,Nawoczenski Deborah A.4

Affiliation:

1. L.M. Riek, DPT, PhD, Department of Physical Therapy, Nazareth College, 4245 East Ave, Rochester, NY 14618 (USA).

2. J. Tome, MS, Department of Physical Therapy, Ithaca College, Ithaca, New York.

3. P.M. Ludewig, PT, PhD, Department of Physical Medicine and Rehabilitation, Programs in Physical Therapy and Rehabilitation Science, University of Minnesota, Minneapolis, Minnesota.

4. D.A. Nawoczenski, PT, PhD, Department of Orthopaedics, University of Rochester Medical Center, Rochester, New York.

Abstract

Abstract Background Circuit resistance training (CRT) should promote favorable kinematics (scapular posterior tilt, upward rotation, glenohumeral or scapular external rotation) to protect the shoulder from mechanical impingement following paraplegia. Understanding kinematics during CRT may provide a biomechanical rationale for exercise positions and exercise selection promoting healthy shoulders. Objective The purposes of this study were: (1) to determine whether altering hand position during CRT favorably modifies glenohumeral and scapular kinematics and (2) to compare 3-dimensional glenohumeral and scapular kinematics during CRT exercises. Hypotheses The hypotheses that were tested were: (1) modified versus traditional hand positions during exercises improve kinematics over comparable humerothoracic elevation angles, and (2) the downward press demonstrates the least favorable kinematics. Design This was a cross-sectional observational study. Methods The participants were 18 individuals (14 men, 4 women; 25–76 years of age) with paraplegia. An electromagnetic tracking system acquired 3-dimensional position and orientation data from the trunk, scapula, and humerus during overhead press, chest press, overhead pulldown, row, and downward press exercises. Participants performed exercises in traditional and modified hand positions. Descriptive statistics and 2-way repeated-measures analysis of variance were used to evaluate the effect of modifications and exercises on kinematics. Results The modified position improved kinematics for downward press (glenohumeral external rotation increased 4.5° [P=.016; 95% CI=0.7, 8.3] and scapular external rotation increased 4.4° [P<.001; 95% CI=2.5, 6.3]), row (scapular upward rotation increased 4.6° [P<.001; 95% CI=2.3, 6.9]), and overhead pulldown (glenohumeral external rotation increased 18.2° [P<.001, 95% CI=16, 21.4]). The traditional position improved kinematics for overhead press (glenohumeral external rotation increased 9.1° [P=.001; 95% CI=4.1, 14.1], and scapular external rotation increased 5.5° [P=.004; 95% CI=1.8, 9.2]). No difference existed between chest press positions. Downward press (traditional or modified) demonstrated the least favorable kinematics. Limitations It is unknown whether faulty kinematics causes impingement or whether pre-existing impingement causes altered kinematics. Three-dimensional modeling is needed to verify whether “favorable” kinematics increase the subacromial space. Conclusions Hand position alters kinematics during CRT and should be selected to emphasize healthy shoulder mechanics.

Publisher

Oxford University Press (OUP)

Subject

Physical Therapy, Sports Therapy and Rehabilitation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3