Understanding high polluted events in a tropical megacity with air quality observations and ERA5-reanalysis data

Author:

Casallas AlejandroORCID,Córdoba Tatiana,Sánchez-Cárdenas Leidy,Guevara-Luna Marco Andrés,Belalcazar Luis Carlos

Abstract

Already published studies found that 20% of the atmospheric pollution variations are linked to local meteorology. This relationship may be more important in places with dense populations such as Latin American cities since the topography and fast multiscale changes are part of the tropical climate. Even so, this possibility has not been addressed in previous studies. This research aims to characterize the relationship between tropical climate variables and PM2.5 levels during high pollution events. The relationship between wind field, Turbulent Kinetic Energy (TKE), radiation, temperature, relative humidity, boundary layer height, and atmospheric stability with PM2.5 concentration was investigated. Statistical correlations and the parcel method were used to analyze the relationship between vertical motions and PM2.5. Obtained results show that the stability, vertical velocity, and boundary layer height do not significantly affect pollution levels. We identified some signals that are strongly related to PM2.5 high concentrations: weaker than average horizontal wind speed and TKE throughout the day, easterly winds in the morning (associated with the transport of ashes from wildfires produced on the Eastern plains), combined with a higher than average radiation peak. These results lead to a better understanding of the PM2.5 variations, which can be applied for the improvement of air quality models and have the potential to be part of a novel policy to manage air quality risk.

Publisher

Universidad de Antioquia

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3