Comparative assessment of computational models for the effective tensile strength of nano-reinforced composites

Author:

Duarte-García MateoORCID,Patiño-Arcila Iván DavidORCID,Isaza-Merino César AugustoORCID

Abstract

Some of the most important industries, such as aerospace, automotive, among others, have stipulated new requirements for materials behavior that include high specific, mechanical, and thermal properties. According to this, nanocomposites have emerged to satisfy these requirements. However, manufacturing these nanocomposites implies cost and time-consuming problems that do not allow their use in technological applications; additionally, the lack of knowledge about the prediction of their mechanical properties is an obstacle to its technological implementation. Therefore, several studies have focused on the development of computational models to predict the mechanical behavior of nano-reinforced composites.  In the present work, a comparative assessment of the main computational models for predicting the tensile strength of nanocomposites is carried out. Firstly, a new taxonomy of these models is proposed, which allows identifying the main experimental variables, model evolution, and precision. With the categorization, computational algorithms are developed for these models for predicting the tensile strength of nanocomposites, accomplishing a comparative analysis of accuracy, robustness, and time-cost among them. The precision of these models is evaluated by deeming benchmark experimental works focused on the tensile strength of nanocomposites. The results obtained demonstrated a minimum relative error of 44.7%, 10.1%, and 10.6% for First-Generation, Second-Generation, and Third-Generation models, respectively. Moreover, linear and non-linear behaviors were found in the evaluated models, being coherent with the number and kind of parameters required for the assessment.

Publisher

Universidad de Antioquia

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3