Abstract
Compressive hyperspectral imaging systems (CSI) capture the threedimensional (3D) information of a scene by measuring two-dimensional (2D) coded projections in a Focal Plane Array (FPA). These projections are then exploited by means of an optimization algorithm to obtain an estimation of the underlying 3D information. The quality of the reconstructions is highly dependent on the resolution of the FPA detector, which cost grows exponentially with the resolution. High-resolution low-cost reconstructions are thus desirable. This paper proposes a Single Pixel Compressive Hyperspectral Imaging Sensor (SPHIS) to capture and reconstruct hyperspectral images. This optical architecture relies on the use of multiple snapshots of two timevarying coded apertures and a dispersive element. Several simulations with two different databases show promising results as the reliable reconstruction of a hyperspectral image can be achieved by using as few as just the 30% of its voxels.
Reference21 articles.
1. W. Chan, K. Charan, D. Takhar, K. Kelly, R. Baraniuk, D. Mittleman. “A single-pixel terahertz imaging system based on compressed sensing”. Applied Physics Letters. Vol. 93. 2008. pp. 121105-121105-3.
2. M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, R. Baraniuk. “Single-Pixel Imaging via Compressive Sampling”. IEEE Signal Processing Magazine. Vol. 25. 2008. pp. 83-91.
3. D. Hays, A. Zribi, S. Chandrasekaran, S. Goravar, S. Maity, L. Douglas, K. Hsu, A. Banerjee. “A hybrid mems–fiber optic tunable fabry–perot filter”. IEEE Journal of Microelectromechanical Systems. Vol. 19. 2010. pp. 419 - 429.
4. J. Brauers, T. Aach. A color filter array based multispectral camera. Proceedings of the 12 Workshop Farbbildverarbeitung, October 5-6. Ilmenau, Germany. 2006.
5. C. Vanderriest. “Integral field spectroscopy with optical fibers”. 3D Optical Spectroscopic Methods in Astronomy, G. Comte and M. Marcelin, eds Astron. Soc. Pac. Vol. 71. 1995. pp. 209-218.