Exergy diagnosis of the combustion process in a Diesel engine

Author:

Agudelo Andrés,Agudelo John,Benjumea Pedro

Abstract

In this work a single-zone and two-species exergy diagnosis model is developed and applied for characterizing the operation of a diesel engine from a secondlaw standpoint. The model allows to study the in-cylinder process during the closed-valve period, and to determine how the exergy is distributed and what is the exergy potential of the losses. Experiments were carried out in a test bed equipped with an automotive, direct injection, turbocharged diesel engine operating at several loads. Combustion diagnosis was made from instantaneous in-cylinder pressure signal and the main operation parameters of the engine were measured in order to guarantee steady state. Irreversibilities and exergy distribution throughout the process were determined. It was found that combustion is the main source of irreversibilities. Results show that exergy destruction decreases as load increases, which mainly led to an increase in the exergy of exhaust gases. Additionally, the cogeneration potential of the engine was identified, exhibiting significant differences between first and second-law results.

Publisher

Universidad de Antioquia

Reference39 articles.

1. I. Dincer, Y. A. Cengel. “Energy, entropy and exergy concepts and their roles in thermal engineering”. Entropy. Vol. 3. 2001. pp. 116-149.

2. M. A. Rosen. “Second-law analysis: approaches and implications”. Int. J. Energy Res. Vol. 23. 1999. pp. 415-429.

3. R. A. Gaggioli. “Available energy and exergy”. Int. J. Applied Thermodynamics. Vol. 1. 1998. pp. 1-8.

4. A. C. Alkidas. “The application of availability and energy balances to a diesel engine”. Journal for Engineering of Gas Turbines and Power. Vol. 110.1988. pp. 462-469.

5. R. J. Primus, P. F. Flynn. “Diagnosing the real perfor¬mance impact of Diesel engine design parameter va¬riation (A primer in the use of second law analysis)”. International Symposium on Diagnostics and Modeling of Combustion in Reciprocating Engines (COMO¬DIA 85). 1985. pp. 529-538.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3