Flaw recognition in reinforced concrete bridges using infrared thermography: A case study

Author:

Aquino-Rocha Joaquin HumbertoORCID,Póvoas Yêda Vieira,Bezerra-Batista Pedro Igor

Abstract

Infrared thermography is a non-destructive test that is increasingly used in the inspection of existing buildings, bridges, and civil works. However, its practice is limited due to the influence of environmental conditions on the results of the test. The present study aims to evaluate the methodology of the test through the inspection of existing reinforced concrete bridges in Recife, Brazil. This city presents different environmental conditions from those reported in the literature, a high ambient temperature and relative humidity. The study comprises the inspection of five bridges in two days, analyzing their superstructure and infrastructure separately. The results show that flaw recognition is possible through the temperature gradient between imperfect and intact regions. Thus, variation in temperature greater than 0.3 °C allows awareness of the problem. The results behavior is different based on the bridge section inspected. The defects in the bridge superstructure are presented as positive thermal gradients. On the other hand, bridge infrastructure’s deficiencies are shown as negative thermal gradients. Although the technique presents several advantages for the inspection, the results must be analyzed in detail to avoid false detections, which may compromise the correct diagnosis of the bridge structures.

Publisher

Universidad de Antioquia

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3