Pedestrian traffic variables acquisition using computer vision

Author:

Quiroga Julián,Romero Néstor,García Carolina,Parra Carlos

Abstract

The traffic problem has several components that may be discussed: vehicles, pedestrians and the interaction between them. This paper proposes a method for acquisition of pedestrian traffic variables, using computer vision techniques. Isolated pedestrians, groups of pedestrians and vehicles at the scene are detected from a video sequence, using a background model. Pedestrians are tracked on the image using their shape and optical flow. Counting is done on any area of the scene to estimate the flow and direction of movement. The proposed method can be configured under different perspectives from a set of examples. The experimental results on crosswalks show that this method allows estimating the variables of interest in complex scenes.

Publisher

Universidad de Antioquia

Reference21 articles.

1. DANE. “Estadísticas vitales”. Disponible en: http://www.dane.gov.co/files/investigaciones/poblacion/defunciones/Defunciones_causa_externa_2008.xls. Recuperado: marzo de 2009.

2. Fondo de Prevención Vial. Accidentalidad vial en Colombia 2007. 2007. pp. 13.

3. World Health Organization. World report on road traffic injury prevention: summary. Geneva. 2004. pp. 1-9.

4. G. Urrego, F. Calderón, A. Forero, J. Quiroga. “Adquisición de variables de tráfico vehicular usando visión por computador”. Revista de Ingeniería, Universidad de los Andes. Vol. 30. 2009. pp. 7-15.

5. J. Berclaz, F. Fleuret, P. Fua. “Robust people tracking with global trajectory optimization.” Proc. of the IEEE Conference on Computer Vision and Pattern Recognition. Vol. 1. 2006. pp. 744-750.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3