Author:
Olarte Oscar Javier,Sierra Daniel Alfonso,Rueda Oscar Leonel
Abstract
A software system as a support for the differential diagnostics of wide complex tachycardia based on the Bayesian diagnostic clinical methodology is presented. The system has different modules to: a) Detect complexes, with Sensibility (Sn) of 94% and Predictive Positive value (VP+) of 97.5%. b) Compute the duration of the complex, with root mean square error (ERMS) of 25.2 ms. c) Determinate the electric axis of the QRS complex, whit RMS error of 5.89º. d) Determinate the branch block morphology, with Sn 89.9% and VP+ 93.3% and d) Classify the QRS morphologies, where complete classification was obtained. The used technique was based in the zero crossings, and singular values (maxima and minima) in the Wavelet Transform. The classification system was developed using artificial neural networks.
Reference25 articles.
1. J. Edhouse, F. Morris, “ABC of clinical electrocardiography: Broad complex tachycardia. Part I”. Br. Med. J. Vol. 324. 2002. pp. 719-722.
2. L. J. Colín. “Electrocardiogram in the differential diagnosis of wide-QRS tachycardias”. Arch Cardiol Mex. Vol. 74. 2004. pp. S44-S49.
3. O. Rueda. Programa de entrenamiento en electrocardiografía. Libro Electrónico. 2ª. ed. Grupo de electrocardiografía, Universidad Industrial de Santander UIS. 2008. pp 175.
4. E.W. Lau, R. K. Pathamanathan, G. André Ng, J. Cooper, J. Douglas Skehan, M. J. Griffith. “The Bayesian approach improves the electrocardiographic diagnosis of broad complex tachycardia”. PACE Pacing Clin. Electrophysiol. Vol. 23. 2000. pp. 1519- 1526.
5. M.E. Herbert, S.R. Votey, M.T. Morgan, P. Cameron, L. Dziukas. “Failure to agree on the electrocardiographic diagnosis of ventricular tachycardia”. Ann. Emerg. Med. Vol. 27. 1996. pp. 35-38.