Herramienta de disección de tramas para protocolos IoT
-
Published:2024-07-15
Issue:45
Volume:
Page:
-
ISSN:3045-4093
-
Container-title:Jornadas de Automática
-
language:
-
Short-container-title:JA-CEA
Author:
Narciandi-Rodríguez DiegoORCID, Aveleira-Mata JoseORCID, Merayo Corcoba AliciaORCID, Rubiños ManuelORCID, Arcano-Bea PaulaORCID, Alaiz-Moretón HéctorORCID
Abstract
Desde hace unos años la aparición y uso de dispositivos IoT (Internet de las Cosas), los cuales destacan por el uso de protocolos ligeros debido a su baja carga computacional, hace que surgan nuevos vectores de ataque en en los sistemas con dispositivos IoT. Es por ello que es necesario entrenar y desarrollar modelos de aprendizaje automático a partir de datos reales, que se implementen en sistemas de deteccion de intrusiones (IDS). Aquí es donde intervienen los datasets los cuales posibilitan esta actividad gracias al desarrollo efectivo de estos modelos. En este trabajo se presenta el desarrollo de un disector de tramas que facilita la generación datasets específicos para los diferentes protocolos IoT existentes que sean útiles para crear modelos de aprendizaje automático a partir de los mismos.
Publisher
Universidade da Coruna
Reference20 articles.
1. Alaiz-Moreton, H., Aveleira-Mata, J., Ondicol-Garcia, J., Mu ̃noz-Casta ̃neda, A. L., Garc ́ıa, I., Benavides, C., 2019. Multiclass classification procedure for detecting attacks on mqtt-iot protocol. Complexity 2019. DOI: 10.1155/2019/6516253 2. Chatzoglou, E., Kambourakis, G., Kolias, C., 2021. Empirical evaluation of attacks against ieee 802.11 enterprise networks: The awid3 dataset. IEEE Access 9, 34188–34205. DOI: 10.1109/ACCESS.2021.3061609 3. Hanan, H., Ethan, B., Miroslav, B., Robert, A., Christos, T., Xavier, B., 2020. Mqtt-iot-ids2020 dataset — papers with code. URL: https://paperswithcode.com/dataset/mqtt-iot-ids2020 4. Ibrahim, Z. A., Razali, R. A., Ismail, S. A., Azhar, I. H. K., Rahim, F. A., Azilan, A. M. A., 2022. A review of machine learning botnet detection techniques based on network traffic log. 2022 IEEE International Conference on Computing, ICOCO 2022, 204–209. DOI: 10.1109/ICOCO56118.2022.10031803 5. Khraisat, A., Gondal, I., Vamplew, P., Kamruzzaman, J., 2019. Survey of intrusion detection systems: techniques, datasets and challenges. The 14th International Conference on Ambient Systems, Networks and Technologies (ANT), March 15-17, 2023, Leuven, Belgium. DOI: 10.1186/s42400-019-0038-
|
|