Integrator for Musculoskeletal Simulation in Python

Author:

García-Mascaraque Herrera Alicia,Montesino Ignacio,Victores Juan G.,Balaguer Carlos,Jardón Alberto

Abstract

La detección de la espasticidad es compleja debido a su origen en el sistema nervioso central y los síntomas musculares. Este proyecto desarrolla un método automático para detectar el grado de espasticidad según la escala Ashworth, usando movimientos pasivos, rápidos y suaves en el paciente y midiendo la excitación cerebral. Software como OpenSim y técnicas como Computed Muscle Control (CMC) han facilitado esta tarea ofreciendo el valor de la excitación cerebral dada una trayectoria de movimiento, aunque presentan errores cuando el tipo de movimiento es suave y rápido. Este artículo implementa el integrador Hybrid Computed Muscle Control (HCMC) con el método Runge-Kutta, mejorando la precisión con un error del 3% respecto a CMC. La implementación en Python aumenta la accesibilidad y permitirá crear una base de datos de pacientes virtuales para aplicar técnicas de Machine Learning, avanzando en el desarrollo de nuevos métodos de diagnóstico.

Publisher

Universidade da Coruna

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3