Author:
Laarej Ayoub,Lakouari Noureddine,Karakhi Azeddine,Ez-Zahraouy Hamid
Abstract
Traffic bottleneck is considered as one of the major causes of the disturbance in traffic flow. The understanding the dynamics between vehicles and bottlenecks is crucial for enhancing traffic flow and ensuring road safety. This research examines a two-lane traffic cellular automaton model to understand the effects of static (e.g., lane reductions) and dynamic (e.g., slow-moving vehicles) bottlenecks on traffic flow and road safety. We found that at low vehicle densities, slow vehicles gravitate towards the open lane, while faster vehicles switch lanes to overtake, returning to their original lane post-bottleneck. At high densities, traffic flow near static bottlenecks ceases, independent of bottleneck length. Safety analysis shows that extended static bottlenecks reduce rear-end collision risk due to fewer lane changes and increased vehicle stationarity. At maximum density, gridlock nullifies the chance of such collisions. Our findings provide actionable insights for traffic planning focused on bottleneck management to improve road safety.
Publisher
Centre for Evaluation in Education and Science (CEON/CEES)
Subject
Mechanical Engineering,General Engineering,Safety, Risk, Reliability and Quality,Transportation,Renewable Energy, Sustainability and the Environment,Civil and Structural Engineering