1. Abraham, A. 2005. Adaptation of Fuzzy Inference System Using Neural Learning. In: N. Nedjah& L. de Macedo Mourelle Eds., Fuzzy Systems Engineering: Theory and Practice, Studies in Fuzziness and Soft Computing 181. Germany: Springer Verlag, pp.53-83;
2. Bajić, Z.J., Djokić, V.R., Veličković, Z.S., Vuruna, M.M., Ristić, M.D., Issa, B.N., & Marinković, A.D. 2013. Equilibrium, Kinetic and Thermodynamic Studies on Removal of Cd(II), Pb(II) and As(V) from Wastewater Using Carp (Cyprinus Carpio) Scales. Digest Journal of Nanomaterials and Biostructures, 8(4), pp.1581-1590. Available at: http://www.chalcogen.ro/1581_Bajic.pdf [Accessed: 21 April 2019];
3. Bajić, Z.J., Veličković, Z.S., Djokić, V.R., Perić-Grujić, A.A., Ovidiu, E., Uskoković, P.S., & Marinković, A.D. 2016. Adsorption study of Arsenic removal by novel hybrid copper impregnated Tufa adsorbents in a batch system. CLEAN Air Water Soil, 44(11), pp.1477-1488. Available at: https://doi.org/10.1002/clen.201500765;
4. Catros, S., Guillemot, F., Lebraud, E., Chanseau, C., Perez, S., Bareille, R., & Fricain, J.C. 2010. Physico-chemical and biological properties of a nanohydroxyapatite powder synthesized at room temperature. Irbm, 31(4), pp.226-233. Available at: https://doi.org/10.1016/j.irbm.2010.04.002;
5. Chakraborty, R., & RoyChowdhury, D. 2013. Fish bone derived natural hydroxyapatite-supported copper acid catalyst: Taguchi optimization of semibatch oleic acid esterification. Chemical engineering journal, 215-2016, pp.491-499. Available at: https://doi.org/10.1016/j.cej.2012.11.064;