Abstract
In this paper we analyze possibilities of application of Sr2CeO4:Eu3+ nanopowder for temperature sensing using machine learning. The material was prepared by simple solution combustion synthesis. Photoluminescence technique has been used to measure the optical emission temperature dependence of the prepared material. Principal Component Analysis, the basic machine learning algorithm, provided insight into temperature dependent spectral data from another point of view than usual approach.
Publisher
Centre for Evaluation in Education and Science (CEON/CEES)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献