Application of machine learning methods in the classification of satellite images

Author:

Čurlin Martina,Drobnjak SinišaORCID,Potić IvanORCID,Đorđević Dejan,Bakrač SašaORCID

Abstract

Machine learning, as a specific domain within artificial intelligence, opens new horizons for both theoretical and experimental research in remote sensing, particularly in satellite imagery classification. This study focuses on applying machine learning methods, specifically decision trees and support vector machines, to classify satellite images. The analysis uses the SAGA GIS software on LANDSAT 8 OLI Level 2A satellite images. Satellite image classification encompasses two primary groups of computer operations: unsupervised (automatic or formal) and supervised (semi-automatic or logical) classification. This research executes the practical classification of satellite images by applying the aforementioned machine learning methods. The results indicate that the obtained classified rasters not only align with but also fully replace existing classification and identification methods of geospatial objects. Consequently, this research contributes to a significant advancement in collecting and analysing geospatial data.

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

Reference24 articles.

1. Russell S. Norivg, P. Artificial Intelligence: A Modern Approach (Global Edition). Artif. Intell. A Mod. Approach, 2021;

2. Nikolić M, Zečević A. Mašinsko učenje; Univerzitet u Beogradu, Matematički fakultet: Beograd, 2019;

3. Taherdoost, H. Machine Learning Algorithms. In Encyclopedia of Data Science and Machine Learning; IGI Global, pp. 938-960, 2022;

4. Kalita, J.K. Machine Learning: Theory and Practice; 1st Edition.; CRC Press: Boca Raton, ISBN 9780367433543, 2023;

5. Novaković J. Đ. Rešavanje klasifikacionih problema mašinskog učenja; Veljović, A., Ed.; Reinženjering pp.; Fakultet tehničkih nauka u Čačku: Čačak, Vol. 4; ISBN 9788677761578, 2013;

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3