Differentiable programming in machine learning

Author:

Kostić Marija,Drašković DraženORCID

Abstract

This paper explains automatic differentiation, discussing two primary modes - forward and backward - and their respective implementation methods. In the context of issues encountered in machine learning and deep learning, the forward mode is deemed more suitable as it efficiently differentiates functions with numerous inputs compared to outputs. Given Python's pivotal role in the ML landscape, the paper elaborates on two widely used deep learning libraries-PyTorch and TensorFlow. While both these libraries support automatic differentiation, they adopt distinct approaches, each carrying its unique strengths and weaknesses.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

Reference36 articles.

1. M. L. Scott, Programming language pragmatics, 4 ed., Oxford, England: Morgan Kaufmann, 2015;

2. J. C. Mitchell, Concepts in programming languages, New York: Cambridge University Press, 2003;

3. Y. LeCun, Y. Bengio and G. Hinton, Deep learning, Nature, vol. 521, no. 7553, pp. 436-444, 2015;

4. M. Abadi, P. Barham, et al., "TensorFlow: A System for Large-Scale Machine Learning," in 12th USENIX symposium on operating systems design and implementation (OSDI 16), 2016;

5. Theano Development Team, Theano: A Python framework for fast computation of mathematical expressions, arXiv e-prints, May 2016;

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3