Effect of non-thermal plasma on cellulose crystallinity and lignin content in corn stalks

Author:

Grbić Jovana,Đukić-Vuković AleksandraORCID,Mladenović DraganaORCID,Lazović Saša,Mojović LjiljanaORCID

Abstract

Lignocellulosic biomass is a cheap raw material that, thanks to its high carbohydrate content, can be used in fermentation to produce biofuels, biogas and other compounds. Its complex structure, including cellulose, hemicellulose and lignin, requires prior treatment of the biomass to facilitate hydrolysis to simple sugars. Today, biomass is only partially utilized and generates about 14% of the world's energy. This is because the most commonly used physical, chemical and physicochemical treatments are not sustainable. They are energy-consuming but still low in productivity and toxic inhibitors formed during these treatments could hinder later steps of fermentation. Biomass treatment with advanced oxidation techniques has great potential as an environmentally friendly, so-called "green" treatment. These processes generate reactive species (radicals, electrons, ions and peroxides) that attack cellulose, hemicellulose, and lignin components. In this work, the effects of non-thermal plasma, the Fenton process, and the combined treatment of corn stalks with non-thermal plasma/Fenton were compared. Grounded biomass of corn stalks was mixed with Fenton reagent and hydrogen peroxide at different ratios and subjected to non-thermal plasma treatment. Carbohydrate content was decreased in non-thermal plasma treated samples both with and without Fe2+. However, a specific biomass: Fe2+:H2O2 ratio was required to achieve the highest rate of lignocellulose decomposition. The cellulose and hemicellulose fractions were affected and reduced by the treatments studied but resulted in almost no changes in the cellulose crystallinity index. The lower lignin content and cellulose crystallinity allow for more efficient enzyme hydrolysis of the treated lignocellulose and new options for valorization in fermentations.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3