Fault identification of ball bearings using Fast Walsh Hadamard Transform, LASSO feature selection, and Random forest classifier

Author:

Dave V.,Thakker H.,Vakharia V.

Abstract

To reveal the machinery health condition, time-frequency analysis is an effective tool when signals are non-stationary. To identify bearing faults, numerous techniques have been proposed by various researchers. However, little research focused on image processing-based texture feature extraction for the identification of faults. The time-frequency image contains many sensitive fault information regarding bearing conditions, which can be extracted in the form of features. Therefore, in this paperwork, a methodology is proposed based on Fast Walsh Hadamard Transform (FWHT) time-frequency spectrogram, gray level co-occurrence matrix (GLCM), and machine learning techniques. A feature vector is constructed which consists of one dimension and two-dimension features extracted from Fast Walsh Hadamard Transform coefficients. To identify the fault conditions, LASSO-based feature ranking is applied to determine the suitable features. Finally, classifiers like Support vector machine (SVM), Random forest, and K-nearest neighbors (KNN) are evaluated for identifying bearing faults. Training, Testing, five-fold cross-validation performed on fusion feature vector. Results indicate that ranked fusion features are effective to diagnose bearing faults with good accuracy.

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3