Evaluation of the mandibular canal by CBCT with a deep learning approach

Author:

Yağmur Ünal,Namdar Pekiner

Abstract

Background/Aim: The mandibular canal including the inferior alveolar nerve (IAN) is important in the extraction of the mandibular third molar tooth, which is one of the most frequently performed dentoalveolar surgical procedures in the mandible, and IAN paralysis is the biggest complication during this procedure. Today, deep learning, a subset of artificial intelligence, is in rapid development and has achieved significant success in the field of dentistry. Employing deep learning algorithms on CBCT images, a rare but invaluable resource, for precise mandibular canal identification heralds a significant leap forward in the success of mandibular third molar extractions, marking a promising evolution in dental practices. Material and Methods: The CBCT images of 300 patients were obtained. Labeling the mandibular canal was done and the data sets were divided into two parts: training (n=270) and test data (n=30) sets. Using the nnU-Netv2 architecture, training and validation data sets were applied to estimate and generate appropriate algorithm weight factors. The success of the model was checked with the test data set, and the obtained DICE score gave information about the success of the model. Results: DICE score indicates the overlap between labeled and predicted regions, expresses how effective the overlap area is in an entire combination. In our study, the DICE score found to accurately predict the mandibular canal was 0.768 and showed outstanding success. Conclusions: Segmentation and detection of the mandibular canal on CBCT images allows new approaches applied in dentistry and help practitioners with the diagnostic preoperative and postoperative process.

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3