GARM: A stochastic evolution based genetic algorithm with rewarding mechanism for wind farm layout optimization

Author:

Mohandes Mohamed,Khan Salman,Rehman Shafiqur,Al-Shaikhi Ali,Liu Bo,Iqbal Kashif

Abstract

Wind energy has emerged as a potential alternative to traditional energy sources for economical and clean power generation. One important aspect of wind energy generation is the layout design of the wind farm so as to harness maximum energy. Due to its inherent computational complexity, the wind farm layout design problem has traditionally been solved using nature-inspired algorithms. An important issue in nature-inspired algorithms is the termination condition, which governs the execution time of the algorithm. To optimize the execution time, appropriate termination conditions should be employed. This study proposes the concept of a rewarding mechanism to achieve optimization in termination conditions while maintaining the solution quality. The proposed rewarding mechanism, adopted from the stochastic evolution algorithm, is incorporated into a genetic algorithm. The proposed genetic algorithm with the rewarding mechanism (GARM) is empirically tested using real data from a potential wind farm site with different rewarding iterations.

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3