D-optimal design of experiments and comprehensive rheological analysis in the development of natural anti-aging creams

Author:

Savić Sanela,Cekić Nebojša,Savić SašaORCID

Abstract

This work is focused on the development and evaluation of completely natural anti-aging creams, with the aid of the experimental design. Model formulations, differing in the content of emollients (10%/15%/20%) and emulsifier (1%/2%/3%) and containing the Acmella oleracea extract as a model anti-aging active were prepared by the cold process and evaluated regarding rheological behavior (con-tinuous rotational and oscillatory tests) and physical stability (dynamic-mechanical thermoanalysis-DMTA test). To study the influence of varied formulation parameters and their interaction on the critical rheological characteristics of the developed creams, a D-optimal design within the response surface method was applied. The data acquired from rheological characterization revealed favorized pseudoplastic (shear-thinning) flow behavior with the yield point, and dominating elastic behavior (storage modulus G' > loss modulus G") in both, amplitude and frequency sweeps, which together with a rather small and constant structural change obtained in the DMTA test indicated satisfying overall physical stability of formulated creams. The results of D-optimal design showed a significant individual, as well as a mutual effect of the tested formulation factors (emollient concentration, emulsifier concentration) affecting critical quality attributes (apparent viscosity, yield point, flow point, G', G", structural change) of developed anti-aging creams. Based on optimization results, the model formulation containing 20% of the emollient mixture and 2% of the emulsifier was selected as preferred in terms of required rheological properties and, thus, desired stability and quality, and it could be considered as a promising candidate worth exploring further for efficacy and in vivo skin performances.

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3