The importance of polymorphisms of regulatory and catalytic antioxidant proteins in chronic kidney disease

Author:

Jerotić Đurđa,Matić Marija,McClements Lana

Abstract

Both excessive production of reactive oxygen species (ROS) and impaired antioxidant function are found in patients with chronic kidney disease (CKD). Therefore, individual susceptibility towards CKD can be induced by functional variations of genes encoding antioxidant regulatory (nuclear factor erythroid 2 - related factor 2 (Nrf2)) and catalytic (superoxide dismutase (SOD2) and glutathione peroxidase (GPX1)) proteins. Several types of single nucleotide polymorphisms (SNPs) have been found within the genes encoding these proteins, with Nrf2 (-617C/A), SOD2 (Ala16Val) and GPX1 (Pro198Leu) conferring impaired catalytic activity. The most unexplored gene polymorphism in CKD susceptibility, progression and survival, with only two original studies published, is the Nrf2 (-617C/A) polymorphism. The results of these studies showed that there was no individual impact of this polymorphism on the susceptibility towards end stage renal disease (ESRD) development, oxidative phenotype and mortality. However, Nrf2 had a significant role in ESRD risk and survival, when combined with other antioxidant genes. The results regarding the impact of SOD2 (Ala16Val) and GPX1 (Pro198Leu) polymorphisms on either CKD or ESRD are still inconclusive. Namely, some studies showed that patients having variant SOD2 (Val) or GPX1 (Leu) allele were at increased risk of CKD development and progression, while other studies reported only weak or no association between these polymorphisms and CKD. Surprisingly, the only study that reported an association of GPX1 polymorphism with overall/cardiovascular survival in ESRD patients showed a significant impact of low activity GPX1 (Leu/Leu) genotype on better survival. In this review, we comprehensively and critically appraise the literature on these polymorphisms related to oxidative stress in CKD patients, in order to identify gaps and provide recommendations for further clinical research and translation. New developments in the field of antioxidant polymorphisms in CKD patients could lead to better stratification of CKD patients, based on a prognostic antioxidant gene panel, and provide a more personalised medicine approach for the need of antioxidant therapy in these patients.

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3