Numerical evaluation of seismic performance of corrugated-plate shaped steel tubes

Author:

Al-Kaseasbeh Qusay,Albarram Ahmed

Abstract

The current work presents a unique study on the seismic performance of innovative corrugated-plate steel bridge piers. While several previous research was conducted on steel tubes with cross sections such as rounded or semi triangular plates, the seismic performance of such structural members with straight ribbed corrugation geometry under uniaxial cyclic loading remained a research gap. Thus, this research aims to present a new concept that could add a promising design to steel tubes under seismic effect. The seismic performance of such piers was numerically investigated in terms of the load-bearing capacity and local buckling. ABAQUS was employed to accomplish a series of finite element analyses on corrugated-plate steel bridge piers under constant axial dead load and lateral cyclic displacement. Three different geometries of corrugated-shaped steel tubes (i.e., C60, C80, and C146 mm deep) along with four different thicknesses (i.e., 6, 8, 10, and 12 mm) were investigated and compared to the traditional circular-shaped steel tubes (i.e., Cir) having same thicknesses and outer diameter. The results revealed that the innovative corrugated-plate steel bridge piers offered 20% greater load-bearing capacity and 66% more ductility compared to their companions of circular-shaped steel tubes. It was interesting to notice that the peak value of the load-bearing capacity of the C146 column was greater than those of the C80 and C60 columns by 7% and 10%, respectively. Furthermore, the local buckling was generally seen less severe amongst corrugated-plate steel bridge piers. This research raises the importance of corrugated-plate sections used in bridge piers over circular shapes owing to their advantages in strength and aestheticism.

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

Subject

Mechanical Engineering,General Engineering,Safety, Risk, Reliability and Quality,Transportation,Renewable Energy, Sustainability and the Environment,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3