Chaotropic effect of trifluoroacetic and perchloric acid on B-cyclodextrin inclusion complexation process with risperidone, olanzapine and their selected impurities

Author:

Đajić Nevena,Krmar JovanaORCID,Malenović AnđelijaORCID,Otašević BiljanaORCID,Protić AnaORCID

Abstract

Effective method development together with method`s eco-friendly character are gaining importance in drug analyses nowadays. One of the strategies often applied to improve the efficacy of separation methods, especially in the case of basic ionizable analytes is adding chaotropic salts into the mobile phases. Moreover, the development of the green liquid chromatography method could also be achieved with certain mobile phase additives such as cyclodextrin (CD). The study aims to investigate whether adding chaotropic agents could improve the complexation process by disrupting the analytes' water solvation shell. The model mixture consisted of risperidone, olanzapine, and their related impurities. Method development was aided with experimental design methodology, while optimal separation conditions were selected using Derringer's desirability function. Mathematical models obtained for each of the examined responses enabled the explanation of the single and simultaneous influence of b-CD concentration, chaotropic agents type, and content, as well as the content of acetonitrile in the mobile phase. Retention factors appeared to be the most influenced by acetonitrile content in the mobile phase. The type of chaotropic agent as well as its concentration lead to retention prolongation, but if acetonitrile content in the mobile phase is high, the effect of chaotropic agent becomes negligible. Interaction between analyte and b-CD are relatively weak in comparison to the interaction of analyte form with either chaotropic agent or acetonitrile. Interaction leading to complexation are outperformed by other analyte related interactions in this complicated system, so complexation based retention reduction is not fully exposed. However, increasing b-CD concentration shows a positive effect on the resolution between critical peak pairs. Optimal separation conditions were selected based on 3D plots of Derringer's desirability function. For olanzapine and its impurity, they included the following: acetonitrile content 16% (v/v), trifluoroacetic acid as a chaotropic agent with 0.95% (v/v) content, and 9 mM b-CD concentration. Further, optimal separation conditions for risperidone and its impurity were 25% (v/v) acetonitrile content in the mobile phase, trifluoroacetic acid as chaotrope agent with 0.27% (v/v) content and 5mM b-CD concentration.

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3