Overview of technologies for Zn extraction from hyperaccumulating plants: Current state of research and future directions

Author:

Jovanović G.,Ranđelović D.,Marković B.ORCID,Sokić M.

Abstract

Phytomining, although predominantly in its early stages on the broader scientific scope of investigation, has garnered interest in metals such as Ni, Au, or rare earth elements (REE). However, Zn pollution from mine wastes, smelters, coal ash and other anthropogenic sources has become an environmental problem. Phytoremediation by hyperaccumulating plants is one of the proposed solutions to mitigate the pollution. Therefore, a need to utilize or dispose Zn hyperaccumulating plants occurred. Since studies of certain hyperaccumulating plant species have been previously conducted in order to extract metal products, similar hydrometallurgical and pyrometallurgical techniques were tried with Zn. The hydrometallurgical route was more focused on producing crude eco catalysts for organic chemistry or separating metal hydroxides by cementation. This was achieved with acid leaching of the ash which was obtained by calcinating the aboveground plant biomass. On the other hand, the pyrometallurgical route was more focused on safe and eco-friendly disposal of combustion products such as ash or biochar, while achieving zero toxic gaseous emissions from biomass pyrolysis. Regardless of the approach further research is needed to investigate the stabilization of metals that remain in the solid fraction during combustion and lowering the metal content in produced gases. So far, none of these technologies have been brought to a semi industrial scale and there is the potential of linking those two approaches together.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

Subject

Energy Engineering and Power Technology,Fuel Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3