Fixed-budget approximation of the inverse kernel matrix for identification of nonlinear dynamic processes

Author:

Antropov Nikita,Agafonov Evgeny,Tynchenko Vadim,Bukhtoyarov Vladimir,Kukartsev Vladislav

Abstract

The paper considers the identification of nonlinear dynamic processes using kernel algorithms. Kernel algorithms rely on a nonlinear transformation of the input data points into a high-dimensional space that allows solving nonlinear problems through the construction of kernelized counterparts of linear methods by replacing the inner products with kernels. A key feature of the kernel algorithms is high complexity of the inverse kernel matrix calculation. Nowadays, there are two approaches to this problem. The first one is based on using a reduced training data sample instead of a full one. In case of kernel methods, this approach could cause model misspecification, since kernel methods are directly based on training data. The second one is based on the reduced-rank approximations of the kernel matrix. A major limitation of this approach is that the rank of the approximation is either unknown until approximation is done or it is predefined by the user, both of which are not efficient enough. In this paper, we propose a new regularized kernel least squares algorithm based on the fixed-budget approximation of the kernel matrix. The proposed algorithm allows regulating the computational burden of the identification algorithm and obtaining the least approximation error. We have shown some simulations results illustrating the efficiency of the proposed algorithm compared to other algorithms. The application of the proposed algorithm is considered on the identification problem of the input and output pressure of the pump station.

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

Subject

Mechanical Engineering,General Engineering,Safety, Risk, Reliability and Quality,Transportation,Renewable Energy, Sustainability and the Environment,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3