Biowastes as a source of extracting chitin and chitosan for biomedical applications

Author:

Yadav Neha,Yinaganti Aditya,Mairal Ayushi,Tripathi Shefali,Jayaraj Jagannath,Chinnasamy Hariharan,Misra Santosh

Abstract

Biomaterials are designed to interact with biological systems in aid to wound healing, regeneration of tissue, mechanical support, and drug delivery to eventually improve current therapeutic outcomes. The adoption of biomaterials is increasing constantly in health care practices by making it more biocompatible and non-toxic under physiological conditions. These adoptions have been associated with improvements in therapeutic outcomes across the population, however, the dosage of therapeutics needed to successfully treat a disease is generally different for each individual and relies a lot on experiences of consultant doctors. Many times, it leads to human errors in deciding on drug doses, un-fit implants and explants and eventually adverse effects or less positive effects. The personalized medicine and devices bring forth the idea that the medicine should be tailored for a patient based on various characteristics, such as gender, age, genetic makeup, and lifestyle. These personalized medicine approaches include type of drugs, activation methods, nanoassemblies, biomedical devices, etc. Among these approaches, personalized biomedical devices have become popular with the advent of 3D printing technologies, which can make customized implants for each patient with minimum price, limited time, and high accuracy. Personalized biomedicine also involves designing of drug to cater the need of an individual with minimum side effects. In this review an effort has been made to introduce different aspects of customized biomedical agents like therapeutic biomolecules, nanomedicine, implants, and explants. This comprehensive review of literature indicates that use of 3D printing technology in producing drug releasing, biodegradable personalized implants could be better therapeutic solution for a range of medical conditions.

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3