Flexural behavior of a concrete beam reinforced with metal rebars produced from a pseudo-elastic Nickel-Titanium alloy

Author:

Mariano Silva,de Almeida,Muterlle Palloma,de_Douglas Sousa

Abstract

The use of concrete in the construction industry is widespread throughout the world, which increases the need for a better characterization of its technical aspects. In particular, there is a need for a better understanding of its poor performance when subjected to dynamic loads, which occurs due to its great stiffness and its little (if any) deformation capacity. Knowing that one of the ways to mitigate the poor behavior of concrete in case of dynamic loads is by improving the deformation capacity or ductility of the metallic reinforcement, the proposal to explore the behavior of a concrete beam reinforced with metallic rebars produced from a pseudo-elastic Nickel-Titanium alloy becomes highly desirable. This experimental research aims to verify the flexural behavior of a concrete beam reinforced with Nickel-Titanium rebars. In this regard, the requirements suggested by the technical standard in force were carefully followed, relying mainly on the international standard ASTM C78. Concrete specimens were produced either reinforced with conventional steel rebars; or reinforced with Nickel-Titanium rebars. The results showed that, although the Nickel-Titanium rebars specimens presented a modulus of rupture 26.48% lower, their displacement was about 642.79% greater in relation to specimens with conventional steel rebars, in addition to presenting a partial recovery of the beam's initial position even after complete concrete breakage.

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

Subject

Mechanical Engineering,General Engineering,Safety, Risk, Reliability and Quality,Transportation,Renewable Energy, Sustainability and the Environment,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3