Optimization and prediction of the hardness behaviour of LM4 + Si3N4 composites using RSM and ANN: A comparative study

Author:

Srinivas Doddapaneni,Sharma Sathyashankara,Gowrishankar G,Nayak Rajesh,Kumar Nitesh,Shettar Manjunath

Abstract

In the present work, LM4 + Si3N4 (1, 2, and 3 wt.%) composites were fabricated using the two-stage stir casting method. Precipitation hardening treatment was carried out on the cast composites and hardness results were compared with as-cast specimens. Microstructural analysis was performed using Scanning Electron Microscope (SEM) images to validate the existence and homogenous distribution of reinforcement in the matrix. LM4 + 3 wt.% Si3N4 composite with multistage solution heat treatment (MSHT) and aging at 100°C showed higher hardness viz., 124% improvement when compared to as-cast LM4 due to the uniform distribution of Si3N4 and precipitation of metastable phases during the heat treatment process. The microhardness values of the fabricated composites was investigated using Artificial Neural Network (ANN) and Response Surface Methodology (RSM). Both RSM and ANN models predicted hardness values close to experimental values with minimum error, and the prominence of aging temperature in the improvement of hardness was observed. The data obtained illustrate that the proposed regression model can accurately predict hardness values within the constraints of the factors under consideration. Based on the error values it can be concluded that the ANN model can deliver results with higher accuracy than the RSM model.

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

Subject

Mechanical Engineering,General Engineering,Safety, Risk, Reliability and Quality,Transportation,Renewable Energy, Sustainability and the Environment,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3