Dynamic response of high-power ultrasonic system based on finite element modeling of piezoelectric

Author:

Luong Viet,Duong Pham,Ngoc Nguyen,Ngo Nhu,Hoa Nguyen,Nguyen Van

Abstract

In this study, a new finite element model for ultrasonic welding equipment is proposed. This help to solve remaining issues such as element type selection for the numerical model, mesh size, and how to determine the parameters of piezoelectric materials. The obtained results clearly show the influence of element type and mesh size on resonance frequency and amplitude. Specifically, with a mesh size of 2 mm, it was concluded to be suitable for the model. For the C3D8 element (C3D8E), the computation time is reduced by 0.25 times compared to the C3D20R element (C3D20RE). After that, an experimental processing procedure is performed to evaluate the numerical simulation results. Specifically, the handling of signal noise when measuring a very small displacement at high frequencies of an ultrasonic vibrating device. Based on the confirmed finite element model, this model is extended to evaluate the influence of the load on the amplitude and resonant frequency of the ultrasonic welding system. The results show that when the load increases, the amplitude decreases while the resonant frequency increases. The results of this study can be applied to the design of ultrasonic vibration systems.

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

Subject

Mechanical Engineering,General Engineering,Safety, Risk, Reliability and Quality,Transportation,Renewable Energy, Sustainability and the Environment,Civil and Structural Engineering

Reference39 articles.

1. B. Chandra Behera (2011), Development and Experimental Study of Machining Parameters in Ultrasonic Vibration-assisted Turning, romhttp://ethesis.nitrkl.ac.in/4416/1/Development_and_experimental_study_of_machining_parameters_in_ultraso nic_vibration-assisted_turning.pdf;

2. A. C. Mathieson (2012), Nonlinear Characterisation Of Power Ultrasonic Devices Used In Bone Surgery, from http://theses.gla.ac.uk/3135;

3. X. Li, P. Harkness, K. Worrall, R. Timoney, and M. Lucas (2017) A Parametric Study for the Design of an Optimized Ultrasonic Percussive Planetary Drill Tool, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 64, no. 3, pp. 577-589, DOI: 10.1109/TUFFC.2016.2633319;

4. Y. Yao, Y. Pan, and S. Liu (2020), Power ultrasound and its applications: A state-of-the-art review, Ultrason. Sonochem., vol. 62, DOI: 10.1016/j.ultsonch.2019.104722;

5. A. T. São-carlense, S. Carlos, S. P. Brazil, and D. Vandepitte (2007), Experimental and Finite Element Analysis of Composite, pp. 447-450;

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3