The effect of the size and shape of wood particles on the tensile strength perpendicular to the plane of the particleboard: Experiments and modeling

Author:

Vasiliev Sergey,Panov Gennadievich Nikolai,Dospekhova Anatolyevna Natalia,Rakovskaya Marina,Pronin Ilya,Kolesnikov Nikolaevich Gennady

Abstract

One of the problems of sustainable development is the technologies improvement for the rational use of wood and other raw materials of plant origin. The literature reflects a large amount of applied research that was conducted to justify new technologies for the production of particle boards (PB). The main attention in the known works is paid to the influence of the particle size distribution on the strength of PB. The influence of particle shape on the PB strength has been studied to a lesser extent. In this regard, this article considers the influence of the shape and size of particles on the tensile strength perpendicular to the plane of the PB. A geometric analysis of the particle shape is performed. It was taken into account that the PB strength depends on the shape and size of the particles, as well as on the number of adhesive contacts between particles. To obtain quantitative estimates, formulas were substantiated confirming that an increase in the length of the particles and a decrease in their transverse dimensions lead to an increase in the PB strength. Experimental research methods were used, and mathematical modeling of the sample failure area was performed.

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

Subject

Mechanical Engineering,General Engineering,Safety, Risk, Reliability and Quality,Transportation,Renewable Energy, Sustainability and the Environment,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3