A new solution for solving a multi-objective integer programming problem with probabilistic multi-objective optimization

Author:

Dženg MaošengORCID,Ju ĐaiORCID

Abstract

Introduction/purpose: In this paper, a new solution for solving a multiobjective integer programming problem with probabilistic multi - objective optimization is formulated. Furthermore, discretization by means of the good lattice point and sequential optimization are employed for a successive simplifying treatment and deep optimization. Methods: In probabilistic multi - objective optimization, a new concept of preferable probability has been introduced to describe the preference degree of each performance utility of a candidate; each performance utility of a candidate contributes a partial preferable probability and the product of all partial preferable probabilities deduces the total preferable probability of a candidate; the total preferable probability thus transfers a multi-objective problem into a single-objective one. Discretization by means of the good lattice point is employed to conduct discrete sampling for a continuous objective function and sequential optimization is used to perform deep optimization. At first, the requirements of integers in the treatment could be given up so as to simply conduct above procedures. Finally, the optimal solutions of the input variables must be rounded to the nearest integers. Results: This new scheme is used to deal with two production problems, i.e., maximizing profit while minimizing pollution and determining a purchasing plan for spending as little money as possible while getting as large amount of raw materials as possible. Promising results are obtained for the above two problems from the viewpoint of the probability theory for simultaneous optimization of multiple objectives. Conclusion: This method properly considers simultaneous optimization of multiple objectives in multi-objective integer programming, which naturally reflects the essence of multi-objective programming, and opens a new way of solving multi-objective problems.

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

Subject

General Engineering

Reference12 articles.

1. Fang, K.-T. 1994. Uniform Design vs. Uniform Design Table. Beijing, China: Science Press (in Chinese). ISBN: 7-03-004290-5 [online]. Available at: https://book.ixueshu.com/book/91793a0541929c0e41e4b4d7d021b3f0318947a1 8e7f9386.html [Accessed: 01 December 2022];

2. Fang, K.-T. & Wang, Y. 1994. Number-theoretic Methods in Statistics. London, UK: Chapman & Hall/CRC. ISBN: 978-0412465208;

3. Fang, K.-T., Liu, M.-Q., Qin, H. & Zhou, Y.-D. 2018. Theory and Application of Uniform Experimental Designs. Singapore: Springer. Available at: https://doi.org/10.1007/978-981-13-2041-5;

4. Huang, Q., Lv, X., Li, X. & Wang, C. 2017. Modern Optimum Theory and Method. Science Press, Beijing (in Chinese). ISBN: 978-7-03-053961-8/O·6977.31;

5. Hua, L.-K. & Wang, Y. 1981. Applications of Number Theory to Numerical Analysis. Berlin, Heidelberg: Springer. Available at: https://doi.org/10.1007/978-3-642-67829-5;

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3